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STRESS AND VELOCITY FIELDS IJ SOIL MECHANICS1

by R. T. Shield

Brown University

Summary
Lines of discontinuity in the plastic stress field of
a cohesive 801l in a state of plane strain are discusseds The |

Jump conditions on the stresses and the restrictions on the
velocity field in the neighborhood of the line are obtained.
The theory is applied to the problem of uniform pressure on
one face of a wedge (or earth dam), and to the problem of a
loaded trapezoid.

Finally, an analytic integration of the plane strain
equations is carried outs Expressions are derived for the

coordinates and curvatures of the fallure lines and the velocity

components at any point of a plastic stress field in terms of

the boundary values.
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iThe results presented in this paper were obtained in the course
of rescarch sponsored by thc 0ffice of Naval Research under
Contract N7onr-35801 with Brown University.
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1. Introduction.

The solutions of many two-dimensional problems in soil
mechanics are based upon the assumption that the soil is a plastic
material in which slip or yielding occurs when the stresses
satisfy the Coulomb formula [1]1

5 5 1/2
1‘(6 +dy) sin cp+{&(dx y) +T .yj =~ ccos9=0, (1)
where ¢ 1s the cohesion and 9 1is the angle of internal
friction of thc soil. Neglecting the weight of the coil, the

stresses also satisfy the equations of equilibrium

do ot -
X
(2)
)
Y+ By o
8x oy

The two characteristic lines of the hyperbolic system of equations

(1), (2) are inclined at an angle =/% + 9/2 to the directiocn
of the algebraically greater principal stress at any point. As A
in [2) the characteristic lines will be called the first and |

second failure lines, with the convention that the direction |

of the first failure 1lino at a point is obtained frou the
direction of the algebraically greater principal stress by u .
clockwise rotation of amount =% + $/2, The inclination of the
first failure 1line t> the x-axis will be denoted by @.

Denoting the principal stroesses by 9y and 62(61 < 02),
it 1s convenient to introduce the quantity

P=7%3sin g2 (3)

Numbers in square brackets rcfer to the bibliography at the end
of the paper.
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An arbitrary constant which has the dimensions of stress is some-
times introduced -into the denominator of the expression for p
in order to make p non-dimensional, dbut this practice will not

be followed hore. With the yileld condition (1), it can be shown

[ 3] that :
j
o, =-pll + sine 9in(20 + 9)] + ¢ cot o, ;
6y = -pll - sing sin(20 + ?)] + ¢ cot g, (4)
Tey = P sin ¢ cos(28 + 9),
and the eduations of equilibrium (2) can be replaced by the
equations
% cot ¢ log p + ® = const, along a first failure line, ()
. % cot ¢ log p - @ = conste along a second failure line, i

These equations were obtained by Massau (4] for a conesionless

301l and by Kotter [5] for a cohesive soil.

Drucker and Prager [6] considered a proper generalization

of the Coulomb hypothesis (1) and used the concept of plastic
potential [7] to obtain a stress-strain law, assuming that the
soil 1s a perfectly plastic body. In the case of plane strain,

the stress-strain law corresponding to the yield function (1) is
5 RN SRV o
Ex =)\éx" e}' -)‘85}" \nr “xa ] (6)

where ey, €y, Y,, aro the plastic strain rates and A is a

non-negative factor of proportionality, With equations (i), the

relations (6) can be written
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. o
€y = z{sinv - 3in(20 + @)} , \

€y = %{sinw + sin(2v + 9)} , (7)

ny =\ cos(20 + 9).

It will be assumed that there is no Ceformation of the soil
until plastic yielding occurs and therefore

o v _ du 4, Qv _
%i'ex’ ay Cty? dy d8x Yxy o

where u,v are the components of velocity along the x,y-axes.

The rate of dilation is found to be

Ex +€, =X sing > 0, (8)

so that plastic deformation must be accompanied by an increase
in volume if ¢ # O,

It was shown in[ 2] that the rslations (7) imply that
the rate of extension along the failure lines is zero, Also,
the characteristic lines of the velocities coincide with ¢tie char-
acteristic lines of the stresses and it is therefore convenient
to refer the velocity equations to the characteristic lines, The
orthogonal projections of the velocity vector on the directions
of the first and second failure lines passing through the point
are denoted by Vi and \X The velocity procjections Viy V5
are related to the cartesian componerts u,v of the velocitiy

by the equations
vi=ucos @ +vsin@Q vy, = -usin(0+9) + v cos (O+p),

p . (9)
u={vycos(0+9}-vysine}sec ¢, v ={vlsin(94¢)+v2cos ejsec @, J

-l =~ S TUR SRR St g ——

t.:r'
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®

The conrdition that the rate of extension along the failure lines

is gero is expreséed by the equations

dv; - (vitan 9+ vp sec 9)de

O along a first failure line, (10) ‘
1 .
0 along a second failure line,

dv2 + (vlsec P+ v, tan ¢)de

and these equations, together with the veloclty boundary condi-
tions and the condition of non-negative dilatation, determine
the velocity fileld when the failure lines are known.
Discontinmuities in the velocity field were consldered
in [2] and it was shown that a line of discontinuity in the
velocity field must be a failure line. The change in velocity
across the line must be inclined at zn angle ¢ to the line of
discontinuity, so that a discontinuity in the tangential vclocity
is accompanied by a separation or a discontinuity in the normal
velocitys In terms of the velocity projections v; and v,
the requirement that ths change in velocity is inclined =t an
angle 9 to the line implies that either v, or vy is con-
tinuous across the line, according as the line 1s a second or

first failure line respectively.,

2. Digcontinuitieg in the stresgeg.

In the theory of a Prandtl-Reuss material, for which
9 = 0, <the possibility of lines of discontinuity in the stress
components 1s well known, and discontinuous stress fields have
proved useful in many problems. Discontinuous stress fields are
of value when 1limit analysis is used to obtain lower bounds for
the collapse values of the surface tractions in a body or

assembiage of bodies, even though the stress fields may be

without obvious physical significance. It seems worthwhile,
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therefore, to consider discontinuous plastic stress fields in a
soil, not only from the viewpoint of obtaining real solutions ’
but also with regard to future applications of 1limit analysis ;
to soil mechanicse A discussion of stress discontinuities in a
cohesionless heavy soil has been given previously by Massau [4].
The following discussion applies to a cohesive soil.

In Fig, 1, the l1ine 4-1 represents an element of
a line of stress discontinuity ceparating the plastic stress
fields g and ke Subscripts g and ) will be uzed to
distinguish the values which a quantity assumes on the two
sides of the line. The normal to the line is inclined at an
angle £ to the x-axis and, from equations (%), the normal

and tangential tractions on such a line are

N

-p(1 + sin ¢ sin(20-20+9)] + ¢ cot o,
} (11)

p sing cos(20-20+9),

The equilibrium of the small rectangular element shown in the
figurc roquires that the normal and tangeniial components of
stress N and T are continuous across the line, but the
interior components N;, N' may be discontinuous. From equa-

b
tions (11), the equilibrium conditions are

Polltsin ¢ 81n(20,-2049)] = p [1+sin g sin(20,-2%9)], 1

(12)

p, cos(26,-23+9) Py c0s(20y,-20+9),

The elimination of pa, pb between these two equations gives,

efter some reduction,

31n(0,+0,-23+9) + sin ¢ cos (0g=0y) = 0, (13)
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provided that sin(@_-0,) # O, that is, provided that the dis-
continuity i1s not of zero strength,

The condition(13) together with one of the conditions
(12) correspond to the jump conditions established by Prager [8]
for a Prandti-Reuss material (¢ = O). For zero angle of friction,

condition (13) becomes
8q + 6 = 234+ nm (14)

The Mohr'!s circles for the regions g and b are
shown in Fig. 2, where pa is taken greater than Py for

definiteness. The c¢ircles touch the yield locus
ft] = ¢ -otan 9,

since the regions are at the point of yielding. The stress point
C has the coordinates (N, -T) and the circles intersect at this
points The poles of the two circlesgre obtained by drawing a line
through C parallel to the element {4 - 4 of the line of dis-
continuity. The points P.,, P, where this line meets the circles
are the poles of the circles, If A;, By and Ap, By denote
the points of contact ci tue circles g and b with the yield
locus, then the lines Pj4,, P,B, and PyAp, PyBp give the
directions of the first and second failure lines in the regions
A and b respectively. It cen be secn from the diagram that
the direction of the line of discontinuity lies in the acute angle
formed by the failure lines in region g and in the obtuse angle
formed by the failure lines in region J}.

It can easily be shown that a failure line cannot be

a line of discontinuity in the stresses. Since a discontinuity

in the velocity field can occur only across a failure line, it
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follows that the velocity field must be continuous across a line

of stress discoatinuity, For a straight line of discontinuity,

vhich may be taken to be parallel to the x-axis, the continuity

cf the velocity cocmpcnent u across the line implies that

du/dx = ¢, 1s continuous across the 1line. This argument can

be extended to show that e, 1is continuous across 2 curved line

of stress discontinuity at any point P of the line, where the

x-axis is taken parallel to the tangent to the line at P.
Considering first a Frandtl-Reuss material, equations (7)

give

A
Ex == % sin 28,

since 9 1s zero for this material. It follows that

Ngq sin 20, =)\b sin 20y, (19

where A _, A, amd @,

in the two stress fields at the point P, The jump condition (1%4)
on 8y, &, requires that

y O, are the values assumed by A and ©

Qb = -Oa : IiT. (16)

Since the 1line is not a failure line, sin 295 # 0, and the
substitution of (16) in (15) gives

This equation implies that Xa and kb are both zero at the
point . P because ka and kb are non-negative quantities. fhe
plastic rate of strain is therefore zero at points on the line of

discontinuity, and the 1ine must be considered as a filament of

non-plastic material, Elastic strains are neglected so that the

e =y
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filament must be taken to bo inextensible but perfectly flexible.
This conclusion has been reached previously [9,10] by assuming that
the 1line of discontinuity is the limiting case of & narrow transi-
tion region in which the stress varies in e rapid but continuous
manner,

In the same way, a line of stress discontinuity in a
soll must be considered as an inextensible filament of non-plastic
material. Apart from the algebra, the discussion i1s the samec as
the above discussion for a Prandtl-Reuss materiai, and it wiil not

be given here.

3. Hgﬂgg Bngﬂ: B!Elﬁ;ﬁxﬁl PresSsSures g’"yx’gﬁﬁ ﬁglﬂh}gﬂﬂo

The problem of wedges with uniform pressure on one face
will be considered in this section and in the fuvllowing section.
A continuous stress solution for obtuse angled wedges has been
given by Prandtl [11] and the pattern of the failure lines is
shown in Fig. 3a. The wedge ABE of angle B, (By 2 n/2) 1is
loaded by a uniform pressure P along AB, producing a plastic
state of stress in the region ABEDC. The regions ABC, BDE are
regions of constant stress and the region BCD 4is a zone of radial
shear of angle 50-“/2. The pressure P required to produce

plastic flow with this pattern of failure lines is given by
P = ¢ coty (exp[(zao - =) tan ¢ ]tan®( E + % ) - 1} . Q17)

The stress field of Fig. 3a is not applicable to acute
angled wedgeas (30 < ®/2) since the two constant stress regions
ABC, BDE would overiap. However, the introduction of a line of

stress discontinuity in the plastic stress region enahles a stress

solution to be found. Fig. 3b shows the wedge loaded along AB,
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The constant stress regions ABC, BCD are separated by a line of
stress discontinuity BC which is inclined to Ab at an angle
Y to be determined. AC and CD are first failure liness Ths
different values a quantity may assume in the regions ABC, BCD
will be distinguished by the subscripts g and D respectively.
Choosing the x,y-axes as shown in the figure, the inclination @

of the first failure lines assumes the values

e = 0, Ob = =(%/2 - Bo)o

a

The substitution of these values into the jump condition (13),
in which Q 1s put equal to vy - (®%/% - 9/2), gives the relation

sin By -~ 2Y) + sin 9 sin BO = 0,

This equation determines the angle Y and the relevant root of

the equation is found to be
Y = 50/2 + p/2, (18)
where p 1s given by
sinp = sin ¢ sin B, 0 Lp S /2 (19)

The value of p in the region BCD 1s determined by ths condition

of zero traction on BD and it has the value

__ccot g

p =
b (1-sin 9)

The second equation of equations (12) then gives

c cot @ sin(g-w

8 (l-sin ¢) sin{Bo+p)
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With equations (11), the normal pressure on AB can now be found
and a little rearrangement gives the value
sin(Bny-
P=ccot e (tan?( E + 2 -___Jl_fi = 1} " (20)
{ 2 7 sin(Bgem)
When ¢ = O (Prandtl-Reuss material), p 4s also zero and (20)

takes the fornm

P = 2¢(1 - cos ﬁo),

agreeing with the value obtained by Prager [ 8], For small values
of Bo, expression (20) is approximately

P = cpg COo8 9,

and 1t follows that for small values of §,, the ratic P/c
decreases as the angle of friction ¢ is increased. Fig. ka
shows the variation of P/c with the angle of the wedge for
¢=0% 20° and 40°% The limiting case ¢=90° 1s also
shcwn in the diagram.

When B, ==n/2, the expressions (17) and (20) have the
common value 2c¢ tan (=/4 + 9/2), and the discontinuous solution
is a continuation of the continuows solution. The full lines in
Fig. 5t shows the variation in P/c¢ with the wedge angle Bo
as furnished by the two solutions for angles of friction of 0°,
20° and %0°, The discontinuous solution also satisfies all the
stress conditions when the angle of the wedge is greater than n/2,
and the stress field, Fig. 3c, is an alternative solution to ths
continuous solution of Fig, 3as However, it will be seen that a
veloclty field cannot be associated with the stress field of Fig,

3¢, so that the discontinuous solution is not acceptable physically

for wedge angles greater than a right angle. The pressure P as
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finished by the discontirnucus solution for obtuse angled wedges is
again given by (20) and this value is lower than the value (17)
obtained from the continuous solutions. The broken lines in Fig.
4b give the values of P/c¢ for varying Bo( By 2 ®n/2) for angles
of friction of 0°, 20° and 40°.
It should perhaps be pointed out that the line of

discontinuity BC 1in Fig. 3¢ 1s not the line joining the point

B 1in Fig. 3a to the point of intersection of the lines AC, ED

except when the angle of friction is gero.

Y4, % Velocit .
Without restricting the generality of the discussion,
the boundary condition on the velocity field in the problem of the
previous section may be taken to be that the normal velocity must
have a given distribution on the loaded part AB of the wedge.
The velocity in the plastic region has to be determined from this
boundary condition and the boundary condition at the plastic rigid
boundary. The given normal velocity along AB must be such that
the resulting velocity field has non-negative dilatation every-
where and also, in the discontinuous stress solutions, the lines of
stress discontinulity must behave as inextensible filaments.
Considering first the continuous stress field of Fig. 3a,
the line ACDE, which is a first failure line, separates the region
of plastic flow from the material which remains at rest. The
velocity along ACDE must, therefore, be inclinsd at an angle
¢ to ACDE so that vQ is zero along ACDE. Since the scecond
failure linees sw straight throughcut the plastic region it follows
that A is zero everywheres. The value of Vi along AB 1is

known from the given normal velocity of AB and the fact that
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Vo 1s gerc slong AB. The variation of vy along the first
failure linys i1s given by the first of equations (10) and knowing
v1 along AB 1t is a simple matter to obtain Vi throughout
the plastic region. The condition of non-negative dilatation
will be satisfied provided that the given normal velocity of a
point on AB 1s a non-decreasing function of the distance of the
point from A.

Considering now the discontinuous stress field for the
acute angled wedge, Fig. 3b, the velocity field must be such that
the discontinuity 1ine BC moves as an inextensible filament.
Since the material below the plastic rigid boundary ACD remains
at rest, this implies that the velocity component along BC 1s
zero for points on BC. In determining the velocity field it is
convenient to use oblique axes a,f having A as origin and
directsd along the first and second failure lines at A, Fig. S.
The normal velocity f(q). is prescribed along AB, the line A3
being given by a = B =1,

The velocity field in the region ABC 13 determined in a
very similar manner to that used by Lee [9) for the same problem
in a Prandtl-Reuss material. It is unnecessary, therefore, to
give the dotails. The value of v
Filg. 5 1s found to be

1 in regions g and L of

vl(B) = 2 cos( ﬁ: = % ) £(B).

The velocity projection is zero in region g bhoacause of the

v

2
boundary condition along AC, while in regions ) ani ¢ 1t is
given by

va(u) = -2 cos( E - % ) tf( 2%1 ),

s et St
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where t = sin{ sec($-9), ¥ 1s the angle BCF and where the
length of AC 1s taken to be unity. For other points in the
region ABC, vl and v, are given in the form of finite series,

As the apex B 1is aporoached, the limiting expressions take the

form
- - i x _9) pBdy - ’
vi(B) = 2cos(f - $) £(p)-tl2cos(f - 3) r(Fg™)
B-1 _
..t:{2c:c>s(’t - ¢) 4 —*————-) =m=t].
| 2 ( t . } L(Zi)
v,(a) = -tl2cos(g - g) f(——l) -t{ZCOS(Q §) f( "}]

The continued fractions which are the arguments of the function
f 1n these expressions represent the coordinates of points on
AB after successive reflections at BC &and AB along lires
parallel to the oblique axes at A,

It can readily be shown that the velocities vy, Vv,
approach limits at the vertex B., Also the limits are such that
1@ velocity of the plestic field near B approaches the velocity
of the non-plastic filament BC at B, this velocity being unique-
ly determined by the velocity condition on BC and the given
normal velocity of AB at B,

The velocities of the points on the filament BC are
.now completely determined. The velocity of a point P in the
region BECD 1: determined from the velocity of the filament BC
and the boundary conditicn at the plastic rigid boundary CD, The
velocity at P depends only upon the velocities of the points X,
Y where the fallure lines through P meet the line BC (see Fig,
5)e vy 1s constant along PX, v, 1s constant along PY and
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v1 and v2

region CDE then~~v2 is zero.

are known at the points X,Y. If 2 1lies in the

The function f£(n) which specifies the distribution of

normal velocity along AB can not be chosen in a completely

arbitrary manner, Cecrtain restrictions must be placed upon

f(n) in order that the dilatation be positive everywhere in the
plastic region. The restrictions are most ecasily obtained in

terms of the veloocity X(4) of the non-plastic filament at the
point distance 4 from C, x(4) 4is continuous since the filament
is non-piastic and also x(0) = 0 from thc condition at C. ]
Omitting the details of the analysis, “t is found that the dilata-

tion will be positive ovcrywhere provided that x'(4) > 0 and

P Al snoth

x'(4) 1s a non-decreasing function, Thesc conditions imply that
the rate of change of curvatire of the filament increases towards

the vertex, Thus the wedge bechaves in a similar fashion to a

beam which is bent by uniform loading.

The restrictions which have to be placed upon f£(n) are
obtained by cxprossing f(n) 1in tcrms of the restricted function
x()-.
| In the discontinuous stress solution of Fig, 3¢, the

velocity conditions for the problem of the acute angled wedge

[F e R T S e A &

apply in this casc also, The plastic rigid boundary AC cnforces

3 v, = O along AC and it foilows that v. = 0 throughout region

2
i ABC of Fig. 3¢, sincc the failure lines are straight., The condi-

tion that the velooity component along BC 1is zero for points on

i BC then requires vy to be zero on BC and in consequonce A4
must be zero throughout the region ABC. Thus the velocity ficld
obtained requires f(n) = 0 along AB and the solution does not
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constitute plastic flow, The discontinuous stress solution for

the obtuse angled wedge is therefore physically inadmissible,

5. Loaded trapezoid.

A further example of discontinuous stress flelds 1is
shown in Fig., 6a, The trapezoid ABCD 1is in a plastic state of
stress due to the normal pressures P,Q on the parallel sides
AB,CD, the sides AD,BC being free from applied traction, The
lines A0, BO, CO, DO are lines of stress discontinuity separating
the regions g, b, &, 4 of constant stress, where the angles marked
Y, 8 1in the figure remain to be dotermined.

The stress boundary conditions require that

Oa':-(%*%)’
O = -G + ) + X
O = '(E * §)’"

where 2X 1s the angle between the sides AD, BC and where the
subsoripts refer to the regions marked g, b, ¢ 1in the figure,
With these values of @, the jump condition (13) at the dis-
continuity lines BO, CO show that

cos (2Y + X) = sin ¢ cos X,
cos (24~ X = sin @ cos X,

and the relevant roots of these equations are

v . X
bﬂ— —’

Y X
Yu g = %8 272
where

cos v = sin ¢ cos X, OS\'S%.
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The values of p in the regions g and ¢ can be
deduced from the known value of n» 1in region } and the jump
conditions (12) at the lines BO, CO., The pressures P, Q can
then be obtained and it is found that

P = ¢ cot v{‘..anz(r g)g{'ﬁH 1} 91
Quocotq:{tan(r; %)% 1} .j

As the angle of friction ¢ tends to zero these expressions tend

(22)

to the vaiues
P0 = 2¢(1+sin X)), QW = 2c(l-sin Y),

agreeing with the values obtained by Winzer and Carrier [(12] for

a Prandtl-Reuss materilal.

It can be shown that a velocity field can not be
associated with the stress fileld of Fig. 6a. This follows in the
same way in which it was shown that a veloocity field could not
be assoclated with the stress field of Fig. 3c. The stress field
is tkerefore physically inadmissible,

If the sides AD, BC of the trapezoid are continued
beyond the points D, C a truncated wedge is obtained, A solu-~
tion corresponding to a uniform pressure on the top surface of
the wedge has been given by Prandtl [Q) and the stress ficld is
outlined in Fig. 6b, The value of the normal pressure P! 1is

in this casc

P! = ¢ cot ¢ {tan?(é + ;) exp(2Y tan 9) = 1}

and this value is greater than the value P given by equation
(22)s A velocity fiold can be associated with the stress field

1~

L Sk o o ~ : B ———
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of Fig. 6b provided that the givsn normal velocity of the points
on AB 1is constant or a monotonic function of the distance from

A.

6. Intesration of the plane strain equations.
In obtaining solutions to plasticity problems in soil

machanics the stress distribution can not always be built up

from the simple failure pattorns of the Rankine zones and the

zone of radial shear., In complex problems involving fields of
varying stress it is usuel to obtain the stresses by approximate
numeriocal methods [ 3]. In this scction cxact expressions will be
dorived for the coordinates and curvaturcs of the fallure lines
and thoe velocity ocomponents at any point of a stress field in terms
of the boundary valucs, However, the expressions involve integrals
which can be evaluated in finite form only whon the boundary
conditions are particularly simple., For this rcason thc analysis
is of 1limited importance and, as in thec theory of a Prandtl-Rouss
matcrial, will mainly be of value in checking the accuracy of the
usual approximate mcthods,

In Fig, 7, the x, y~-axes are taken at a point O along
and normal to the direction of the first failurs line at 0. The
first and sccond failurs lines OA and OB will be called the
a base-line and thc f base-line respcoctively, The curvilinear
coordinatcs of a point P are defined by the pair of quantities
(a,f); where a is the valus of © at the point A where the
second fallure line through P meets the a base-line OA, and

wvhere B 1is the value of © at the point B where the first
failure line through P meets the P bese-line UB. The GorTe=-
spondence between (a,f) and the coordinates (x,y) of P 1is
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one to one except when ons of the families of faiiure lines is
straight., It follows from the definition that o and P are
constant along the second and first failure lines respectively,
and the base-lines are given by B =0 and o = O,

With squations (5) it 1is not difficult to show that

@ =a+ B,

(22)
%cotq;logp:ﬂ-a +%cotq:logpo,

where © and p are evaluated at the point P and po is
the value of p at the origin C. The first of equations (23)
is a statsmsnt of what 1s usually known as Hencky's first theorem

[13], which 1s expressed analytically by

Op - O = 8, - 9. (24)

The theorem was first stated by Massau [4] for the casc of a

cohesionless soil., Equation (23) can be re-arranged to give

2a

1 - (4 =
5 cot 9 log Pg ( 3 cot 9 log p - ©), (259
2

2B -%cotcp logpo+(12-cot¢ log p + ©).

Coordinates ;:,} are introduced by mcans of the equa-

tions

X = x cos(0+¢) + y sin(0+9), ¥ = -x sin @ + y cos 0,

x ={x cos 0 -y sin(0+9)} sec ¢, ¥y = {?c 8in0 + y cos(0+9)} sec ¢.
(26)

The geometrical significance of the coordinates (x,y) is shown

in Pig. 8; x and y are the distances of tho origin O from
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the tangents to tho second and first failure lines at P. The
coordinates x,y have been used in the theory of the Prandtl-
Reuss mstorial [14]. On a first failure line (on which dy =
tan ¢ dx) equations (26) give

- sin 9 dx + cos @ dy - (x cos @ + y sin @) d@

dy

- (x sec ¢ - ¥ tan ¢) 40,

and therefore

dy +(x szec @ -y tan ¢)d0 = O along a first failure line. (27)

Similarly,

dx -(y scc ¢ -x tan 9)d0 = O along a second failure line. (28)

The radii of curvature R,S of the first and second

failure lines at the point P are defined by
4=, i--29, (29)
858, S 052

where S and 8, are the arc-lengths along the first and soecond
failure lines. Fig, 9 shows the intersection of two neighboring
first failure lines with two neighboring second failure lines.
The small angles Oy = €,y & - °A will bo denoted by 49;,AQ,
respectively. In ine figure, Aol is positive while 80, 1s
negatives It follows from the dofinitions (29) that

RAOI =Asl, 8602 = -A32 (30)
and therefore

o =2 )
-5-8—2-(1“01) 032 (A 81)0 (31)
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From ine geometry of Fig. 9 and equatioans (30),

As -AOl sec ¢ A32 - 49, tang Ass1

DC 1

bs, - A91A92(sec Q - % tan o),

where the sign of A92 has been taken into account. Hence

-698-2(Asl) = -A9,(sec ¢ - % tan ¢). Equation (24) shows that

Aol is a constant and it can be taken outside the operator on

the left hand side of equation (31), and we have finally

g—%a = -(gec p - -g tan ¢).
Similarly (32)
%21 = -(sec ¢ - ‘S tan ¢).

These equations give the variation of the radii of
curvature alcng the failure lines. The corresponding equations
for a cohesionless heavy soil have been deduced previously by
Massau (4], When ¢ = O equaticns (32) become
Q-B =3 -1’ gs = "10

882 081

and this is an analytical statement of Hencky's second theorem
for a Prandtl-Reuss material.
The substitution of RAOl and -8A0 for the arc-

2
lengths Asl and Aso gives an alternative form of equations

(32),

ds +(R sec ¢ ~ S tan ¢)d@

n

4R -(S sec ¢ - R tan ¢)d0 = 0O along a second failure line.

T — . .

O along a first failure line, ]
} Gn L

i

A
-

|
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On a first failure line d90 = da and d0 =P on a

second failure lifne so that equations (10) can be written

ov :
-4 .
o (vl tan ¢ + v, sec ) = 0,

"

v .
353+(v2 tan ¢ + v, sec ®)

An alternative form of these equations is

O.

E%[vlexp{(,B-a) tan 9} ]- sece v, exp{(p-a) tang}= 0,
' (34)
a%[vzeXp{(ﬁ-a) tan g¢}l]+ seco v, exp{(g-a) tang} = 0.

In the same way, oquations (27) and (28) can be replaced by
%[} exp {§ -a) tan ¢]) + seco x exp{(B-a) tan 9}= 0, )
(39)
fg[i exp{@-a) ten 9}]- sec® ¥ oxp((p-a) tan ¢}= O,

and equations (33) become

'5%[8 exp{@ -a)tan 9} )+ sec ¢ R exp{(B-a)tang} = O,

(36)

3%-(R exp {(B-a) tan ¢}]- sec ¢ S exp{(p-a)tan ¢} = O.

With equations (23), the exponential term in equations (3%), (35),
(36) can be written

4

exp{(ﬁ-a)tan ¢} = exp{-1 log -P-} -.-(2.)
2 P p
0 oF,
It can easily be deduced from equations (34%), (35), (36)
that each of the quantities v, v,, Xs; ¥y R, S multiplied by
exp{(B -a) tang} satisfles the differential equation




g
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2

8 f 2 =
2a0p * ¢ @ £ = 0. (37)

The method of solution of this equation, which is one form of the

equation of telegraphy, depends upon the manner in which the
boundary conditions on the function f are prescribed. The
analytic sclution for one typne of boundary condition is given
below. The soclutions for other types follow closely the analytic
solutions for the corresponding problems in a Prandtl-Reuss
material [10].

We suppose that the stress components are given along
a curve ¥ which is not a failure 1line. If only the normal
and tangential stresses are givem on Z, two values for the
interior stress component can be obtained from the yield condition
and the correct vaiue must be determined from the conditions of
the problem in question. The stresses on I define thsc variation
¢cf p and @ along %X, and, frcz the theory of characteristics,
these boundary values define the stress field in the region DEC
enclcsed by £ and the two failure lines, one from each fenmily,
passing through the end points D,E of Z and meeting at a
point C. In Fig. 10a, the failure line DC 1is taken to belong
to the first family of failure lines. The values of a and §
along Z can be obtained from equations (25%) and Fig. 10b shows
the configuration in the ¢gf plane,

The values of R and S along X are obtained as
follows, If s 1is the arc-iength along X from the point D

then
L. cos(b-9) sec L F sin ¢ soc 9 (38)
0s \ 08] \ 532 !




1

1

e —
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where % 1s the angle between the first failure direction and
the tangent to Z. Hence, from equation (29),

.6289 = cos@-9) sec ¢/R - sin ¥ sec 9/S ,

and also

.693[% cot ¢ log p) = - cos(¥=-¢) secyp /R - sin ¥ sec® /S

frrn equations (%) and (29)¢ R and S are therefore given at
points on ¥ by the relations

b NPl L _Q_[% cote log p - 0J,
R 2 costhg) 98
cosg (39)
.l - - —— < °
S~ gin 03(% ote logp+ 0]

The derivatives of R and S with respect to p and a respective-

ly are known along X from eGuations (36) when R and S are

known along £Z. The other derivativss can then be calculated from

the equation

:—5 = {cos(q;-cp)sec <p/R} %5 - {sin Y sec Q/S}-g-é: ; (40)
which follows from equation (38) and the definitions of R, S.

The boundary values of (X, y) are given immediately
by equations (26) so that the boundary values of the quantities
X exp {8-0) tan 9}, ¥ sxp{(B-a) tan ¢} can be found. The
derivatives of these quantities at points on I are calculable
from equations (35) and (40).

We surpose also that v, and v

2
curve s The boundary values assigned to vy Vo must be

are specified on the

compatible with the stress boundary conditions on £ 1in order
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to ensure that the resuiting velocity solution has non-negative
dilatation everywhere. The quantities v,exp{(B-a)tan ¢} ,
vzexp{(a-a) tan ¢} are then known on I and the derivatives of
these quantities at points on T can be found from equations (34)
and (40), This is eguivalent to specifying a member of the pair
(vl,va) and one of its derivatives since the other member of the
pair can be determined from squations (3%) and (40).

Thus the problem of determining the quantities (vl,va),
(x,y) and (R,S) in the region DEC 1is reduced to the problem
of determining a function f(a,p) which satisfies equation (37)
and which has prescribed values for f and one of its derivatives
on the ecurve ¥, The other derivatives at points on Z can be
obtained from equation (40). Lat P(a,b) be a point in the region
DEC and let AP and BP be the failure iines through P meeting
the curve £ at A and B. Employing the method of Riemann, a
particular solution of equation (37) with certain properties to be
defined later will be deroted by G(a,p)e It follows that the

expression
8L _ o 16 &g _ )
(G e - L 50 )da+ %8 G Sﬁ ap (&1)
is a perfect differential since
02r 2 gzg
Gb_aOB = -Gf sec~ ¢ = rbaéB .

The integral of the expression (41) taken around any closod curve
is therefore zero and if the expression is integrated around the

curve APBA thore results

e

onm—

g e e e e

o ez g
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2R

P ‘B
- ag _ o of e
0 J; (e 83 =55 ap + jp (G £ 89) aa

(4+2)

A
+ {(Gg-f-fg%)da+(fg-§-cg{)dp}.

B

In order tc evaluate the first two integrals explicitly, the
function G(a,pP) 1is now defined to Le such that G =1 on AP
and BP, This implies that %g =0 on AP and %g =0 on BP

and, after some re-arrangement, equation (39) gives

A

It can be shown that the particular function G 4is given by
G(a,p) = Jgl2 sec q){(a-d)(b-ﬁ)}}],

where J,(E) 1s the Bessel function of order zero,
I+ %o +3 =0, Jo0) =1 J'(0) = 0

0 ¢ 0 ’ 0 ’ 0 *
Equation (43) theretore expresses the value of f at the point P
in terms of f and its derivatives along A3, f can be replaced
by any one of the quantities wv,, Vo, X, ¥, R, S mltiplied by

exp{(B-1) tan ¢}

gt 1 T W I o LT
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